0 v 1 [ m at h . D S ] 6 A ug 2 00 4 Unipotent flows on the space of branched covers of Veech surfaces

نویسندگان

  • ALEX ESKIN
  • JENS MARKLOF
  • DAVE WITTE MORRIS
چکیده

There is a natural action of SL(2, R) on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup U = 1 * 0 1. We classify the U-invariant ergodic measures on certain special submanifolds of the moduli space. (Each submanifold is the SL(2, R)-orbit of the set of branched covers of a fixed Veech surface.) For the U-action on these submanifolds, this is an analogue of Ratner's Theorem on unipotent flows. The result yields an asymptotic estimate of the number of periodic trajectories for billiards in a certain family of non-Veech rational triangles, namely, the isosceles triangles in which exactly one angle is 2π/n, with n ≥ 5 and n odd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unipotent flows on the space of branched covers of Veech surfaces

There is a natural action of SL(2,R) on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup U = {( 1 ∗ 0 1 )} . We classify the U -invariant ergodic measures on certain special submanifolds of the moduli space. (Each submanifold is the SL(2,R)-orbit of the set of branched covers of a fixed Veech surface.) For the U -action on these submanifolds, this is...

متن کامل

ar X iv : m at h - ph / 0 40 80 37 v 1 2 4 A ug 2 00 4 Integrable nonholonomic geodesic flows on compact Lie groups ∗

This paper is a review of recent results on integrable nonholonomic geodesic flows of left–invariant metrics and leftand right–invariant constraint distributions on compact Lie groups.

متن کامل

MODULI SPACES OF BRANCHED COVERS OF VEECH SURFACES I: d-SYMMETRIC DIFFERENTIALS

We give a description of asymptotic quadratic growth rates for geodesic segments on covers of Veech surfaces in terms of the modular fiber parameterizing coverings of a fixed Veech surface. To make the paper self contained we derive the necessary asymptotic formulas from the Gutkin-Judge formula. As an application of the method we define and analyze d-symmetric elliptic differentials and their ...

متن کامل

ar X iv : m at h / 06 02 39 4 v 1 [ m at h . G T ] 1 7 Fe b 20 06 MODULAR FIBERS AND ILLUMINATION PROBLEMS

For a Veech surface (X, ω), we characterize Aff + (X, ω) invariant subspaces of X n and prove that non-arithmetic Veech surfaces have only finitely many invariant subspaces of very particular shape (in any dimension). Among other consequences we find copies of (X, ω) embedded in the moduli-space of translation surfaces. We study illumination problems in (pre-)lattice surfaces. For (X, ω) prelat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004